12,170 research outputs found
T Cell Responses during Acute Respiratory Virus Infection
This article is made available for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.The T cell response is an integral and essential part of the host immune response to acute virus infection. Each viral pathogen has unique, frequently nuanced, aspects to its replication, which affects the host response and as a consequence the capacity of the virus to produce disease. There are, however, common features to the T cell response to viruses, which produce acute limited infection. This is true whether virus replication is restricted to a single site, for example, the respiratory tract (RT), CNS etc., or replication is in multiple sites throughout the body. In describing below the acute T cell response to virus infection, we employ acute virus infection of the RT as a convenient model to explore this process of virus infection and the host response. We divide the process into three phases: the induction (initiation) of the response, the expression of antiviral effector activity resulting in virus elimination, and the resolution of inflammation with restoration of tissue homeostasis
Electromagnetically controlled multiferroic thermal diode
We propose an electromagnetically tunable thermal diode based on a two phase
multiferroics composite. Analytical and full numerical calculations for
prototypical heterojunction composed of Iron on Barium titanate in the
tetragonal phase demonstrate a strong heat rectification effect that can be
controlled externally by a moderate electric field. This finding is of an
importance for thermally based information processing and sensing and can also
be integrated in (spin)electronic circuits for heat management and recycling.Comment: Accepted in Phys. Rev.
Scaling in directed dynamical small-world networks with random responses
A dynamical model of small-world network, with directed links which describe
various correlations in social and natural phenomena, is presented. Random
responses of every site to the imput message are introduced to simulate real
systems. The interplay of these ingredients results in collective dynamical
evolution of a spin-like variable S(t) of the whole network. In the present
model, global average spreading length \langel L >_s and average spreading time
_s are found to scale as p^-\alpha ln N with different exponents.
Meanwhile, S behaves in a duple scaling form for N>>N^*: S ~ f(p^-\beta
q^\gamma t'_sc), where p and q are rewiring and external parameters, \alpha,
\beta, \gamma and f(t'_sc) are scaling exponents and universal functions,
respectively. Possible applications of the model are discussed.Comment: 4 pages, 6 Figure
Quantum discord dynamical behaviors due to initial system-cavity correlations
We analyze the roles of initial correlations between the two-qubit system and
a dissipative cavity on quantum discord dynamics of two qubits. Considering two
initial system-cavity states, we show that the initial system-cavity
correlations not only can initially increase the two-qubit quantum discord but
also would lead to a larger long-time quantum discord asymptotic value.
Moreover, quantum discord due to initial correlations is more robust than the
case of the initial factorized state. Finally, we show the initial
correlations' importance for dynamics behaviors of mutual information and
classical correlation
Adiabatic Theory of Nonlinear Evolution of Quantum States
We present a general theory for adiabatic evolution of quantum states as
governed by the nonlinear Schrodinger equation, and provide examples of
applications with a nonlinear tunneling model for Bose-Einstein condensates.
Our theory not only spells out conditions for adiabatic evolution of
eigenstates, but also characterizes the motion of non-eigenstates which cannot
be obtained from the former in the absence of the superposition principle. We
find that in the adiabatic evolution of non-eigenstates, the Aharonov-Anandan
phases play the role of classical canonical actions.Comment: substantial revision, 5 pages and 3 figure
How to project a bipartite network?
The one-mode projecting is extensively used to compress the bipartite
networks. Since the one-mode projection is always less informative than the
bipartite representation, a proper weighting method is required to better
retain the original information. In this article, inspired by the network-based
resource-allocation dynamics, we raise a weighting method, which can be
directly applied in extracting the hidden information of networks, with
remarkably better performance than the widely used global ranking method as
well as collaborative filtering. This work not only provides a creditable
method in compressing bipartite networks, but also highlights a possible way
for the better solution of a long-standing challenge in modern information
science: How to do personal recommendation?Comment: 7 pages, 4 figure
Mutual selection in network evolution: the role of the intrinsic fitness
We propose a new mechanism leading to scale-free networks which is based on
the presence of an intrinsic character of a vertex called fitness. In our
model, a vertex is assigned a fitness , drawn from a given probability
distribution function . During network evolution, with rate we add a
vertex of fitness and connect to an existing vertex of fitness
selected preferentially to a linking probability function
which depends on the fitnesses of the two vertices involved and, with rate
we create an edge between two already existed vertices with fitnesses
and , with a probability also preferential to the connection
function . For the proper choice of , the resulting networks
have generalized power laws, irrespective of the fitness distribution of
vertices.Comment: ws-ijmpc.te
- …