8 research outputs found

    A new age of leadership in academia: Need for change and innovation during COVID-19

    Get PDF
    © The Author(s) 2025.The aim of this study is to explore the role of academic leadership and adaptive leadership on organizational readiness for change. During times of pandemic, adaptive leadership has emerged as a vital leadership discipline along with academic leadership due to uncertainty and sensitivity of situation. In addition, demand of innovative behavior has also increased over the years particularly during Covid-19. The study has been carried out in Higher Education Institutions of Pakistan where the data was collected from deans, directors and head of departments in two phases. Quantitative research strategy was opted for the study. Survey research design was followed to respond objectives of the study. The purpose behind the selection of senior academicians is to draw empirical results from the perspective of all the heads of their relevant departments. The data was collected from seven public sector universities across Pakistan. About 251 responses were found valid. Covariance based SEM was used to analyze the data. Analysis reveals a positive and direct relationship between academic and adaptive leadership and organizational readiness for change and similar results were found by placing innovative behavior as a mediator leading to the acceptance of all developed hypotheses. This study is unique in nature and has implications for leaders in academia in terms of unleashing the potential toward uncertain situation in higher education institutions. Study’s major limitation include less representation of the Pakistan as whole country as it included Punjab province only for data collection.Unfunde

    SpiNNaker: Fault tolerance in a power- and area- constrained large-scale neuromimetic architecture

    Get PDF
    AbstractSpiNNaker is a biologically-inspired massively-parallel computer designed to model up to a billion spiking neurons in real-time. A full-fledged implementation of a SpiNNaker system will comprise more than 105 integrated circuits (half of which are SDRAMs and half multi-core systems-on-chip). Given this scale, it is unavoidable that some components fail and, in consequence, fault-tolerance is a foundation of the system design. Although the target application can tolerate a certain, low level of failures, important efforts have been devoted to incorporate different techniques for fault tolerance. This paper is devoted to discussing how hardware and software mechanisms collaborate to make SpiNNaker operate properly even in the very likely scenario of component failures and how it can tolerate system-degradation levels well above those expected

    SPARC 2017 retrospect & prospects : Salford postgraduate annual research conference book of abstracts

    Get PDF
    Welcome to the Book of Abstracts for the 2017 SPARC conference. This year we not only celebrate the work of our PGRs but also the 50th anniversary of Salford as a University, which makes this year’s conference extra special. Once again we have received a tremendous contribution from our postgraduate research community; with over 130 presenters, the conference truly showcases a vibrant PGR community at Salford. These abstracts provide a taster of the research strengths of their works, and provide delegates with a reference point for networking and initiating critical debate. With such wide-ranging topics being showcased, we encourage you to exploit this great opportunity to engage with researchers working in different subject areas to your own. To meet global challenges, high impact research inevitably requires interdisciplinary collaboration. This is recognised by all major research funders. Therefore engaging with the work of others and forging collaborations across subject areas is an essential skill for the next generation of researchers

    SPARC 2016 Salford postgraduate annual research conference book of abstracts

    Get PDF

    A GALS Infrastructure for a Massively Parallel Multiprocessor

    No full text
    This case study focuses on a massively parallel multiprocessor for real-time simulation of billions of neurons. Every node of the design comprises 20 ARM9 cores, a memory interface, a multicast router, and two NoC structures for communicating between internal cores and the environment. The NoCs are asynchronous; the cores and RAM interfaces are synchronous. This GALS approach decouples clocking concerns for different parts of the die, leading to greater power efficiency

    Formal modeling and analysis of the hexosamine biosynthetic pathway: role of O-linked N-acetylglucosamine transferase in oncogenesis and cancer progression

    No full text
    The alteration of glucose metabolism, through increased uptake of glucose and glutamine addiction, is essential to cancer cell growth and invasion. Increased flux of glucose through the Hexosamine Biosynthetic Pathway (HBP) drives increased cellular O-GlcNAcylation (hyper-O-GlcNAcylation) and contributes to cancer progression by regulating key oncogenes. However, the association between hyper-O-GlcNAcylation and activation of these oncogenes remains poorly characterized. Here, we implement a qualitative modeling framework to analyze the role of the Biological Regulatory Network in HBP activation and its potential effects on key oncogenes. Experimental observations are encoded in a temporal language format and model checking is applied to infer the model parameters and qualitative model construction. Using this model, we discover step-wise genetic alterations that promote cancer development and invasion due to an increase in glycolytic flux, and reveal critical trajectories involved in cancer progression. We compute delay constraints to reveal important associations between the production and degradation rates of proteins. O-linked N-acetylglucosamine transferase (OGT), an enzyme used for addition of O-GlcNAc during O-GlcNAcylation, is identified as a key regulator to promote oncogenesis in a feedback mechanism through the stabilization of c-Myc. Silencing of the OGT and c-Myc loop decreases glycolytic flux and leads to programmed cell death. Results of network analyses also identify a significant cycle that highlights the role of p53-Mdm2 circuit oscillations in cancer recovery and homeostasis. Together, our findings suggest that the OGT and c-Myc feedback loop is critical in tumor progression, and targeting these mediators may provide a mechanism-based therapeutic approach to regulate hyper-O-GlcNAcylation in human cancer
    corecore